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Abstract: Stroke is one of the leading causes of disability worldwide despite recent advances in
hyperacute interventions to lessen the initial impact of stroke. Stroke recovery therapies are crucial
in reducing the long-term disability burden after stroke. Stroke recovery treatment options have
rapidly expanded within the last decade, and we are in the dawn of an exciting era of multimodal
therapeutic approaches to improve post-stroke recovery. In this narrative review, we highlighted
various promising advances in treatment and technologies targeting stroke rehabilitation, including
activity-based therapies, non-invasive and minimally invasive brain stimulation techniques, robotics-
assisted therapies, brain–computer interfaces, pharmacological treatments, and cognitive therapies.
These new therapies are targeted to enhance neural plasticity as well as provide an adequate dose of
rehabilitation and improve adherence and participation. Novel activity-based therapies and telereha-
bilitation are promising tools to improve accessibility and provide adequate dosing. Multidisciplinary
treatment models are crucial for post-stroke neurorehabilitation, and further adjuvant treatments
with brain stimulation techniques and pharmacological agents should be considered to maximize
the recovery. Among many challenges in the field, the heterogeneity of patients included in the
study and the mixed methodologies and results across small-scale studies are the cardinal ones.
Biomarker-driven individualized approaches will move the field forward, and so will large-scale
clinical trials with a well-targeted patient population.
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1. Introduction

Stroke is one of the leading causes of long-term disability worldwide. Stroke rehabili-
tation therapies aim to enhance favorable neuroplasticity. With the advances in technology,
the stroke recovery field is rapidly evolving and various promising novel treatment ap-
proaches and technological advances are becoming part of the therapeutic armamentarium
to improve post-stroke recovery in both the post-acute and chronic phases. In order to
inform and guide medical providers treating patients with stroke, this review aims to
discuss these advances, including activity-based therapies, technology-assisted therapies,
non-invasive and minimally invasive brain stimulation techniques, lesion bypass systems,
pharmacological treatments, and cognitive therapies.

2. Non-Invasive/Minimally Invasive Brain Stimulation

Recovery from stroke requires extensive plastic changes in the nervous system and
their adaptation. The initial spontaneous recovery occurs via this neuroplasticity, mainly
by neuroregeneration and reorganization. Functional magnetic resonance imaging (fMRI)
studies showed reorganization of the lesional area into the non-lesional cortex [1,2]. This
reorganization is associated with increased bilateral activation in the early/acute phase,
which becomes lateralized towards the non-lesional hemisphere in the chronic phase.
The later changes typically lead to a maladaptive interhemispheric imbalance, which
may interfere with recovery. These post-stroke intra and interhemispheric changes were
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further characterized by electroencephalogram (EEG) and used to understand mecha-
nisms of recovery and treatment responses. After stroke, the higher frequency activities
(≥8 Hz, such as alpha and beta waves) and intra-hemispheric connectivity are reduced,
which results in imbalanced activity between lesioned and non-lesioned hemispheres [3].
The compensatory changes in the non-lesioned hemisphere discussed above are hypoth-
esized to worsen this interhemispheric imbalance. Therefore, the recovery mechanisms
are focused on restoring interhemispheric balance and increasing intrahemispheric con-
nectivity in the lesioned hemisphere. Figure 1 illustrates these post-stroke changes and
recovery patterns.
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non-lesional/unaffected hemisphere. The rationale of brain stimulation techniques is to 
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Figure 1. Illustration of the post-stroke EEG changes in the brain and patterns of recovery identified
on the EEG correlating with good (highlighted in red) and poor recovery (highlighted in blue). Degree
of coherence of intrahemispheric connectivity is represented by the width of the lines in the network.
The overall activity of the hemisphere, as well as nodes in the network, is represented in a color-coded
manner (red: most active, yellow: less active, blue: least active, no color: no activity). Stroke infarct is
represented as a dark shade on the lesioned hemisphere. Up arrow means increased and down arrow
means decreased.

The concept of brain stimulation techniques aims to modulate neural networks specifi-
cally and selectively by enhancing adaptive patterns and suppressing maladaptive ones [4].
The historical use of brain stimulation dates as early as the 11th century, and in the 1960s,
scientific studies on animal models using weak electric current to the exposed motor cortex
showed long-lasting polarizing effects [5] and subsequently in human studies [6]. The hypo-
thetical model of brain stimulation modulated the imbalanced interhemispheric inhibition
by activating the lesional/affected hemisphere while inhibiting the non-lesional/unaffected
hemisphere. The rationale of brain stimulation techniques is to improve recovery by enhanc-
ing adaptive plasticity when applied concomitantly with other therapies. The application
of brain stimulation techniques has increased significantly, and we will focus on current
advances in non-invasive/minimally invasive stimulation techniques, particularly va-
gus nerve stimulation (VNS), transcranial magnetic stimulation (TMS), and transcranial
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direct current stimulation (tDCS). Table 1 summarizes prominent recent clinical trials
in neuromodulation.

Table 1. Prominent clinical trials in neuromodulation. UEFM: Upper Extremity Fugl-Meyer; WMFT:
Wolf Motor Function Test; MAL: Motor Activity Log; SIS: Stroke Impact Scale; BDI: Beck’s Depression
Inventory; Euro-Qol-5D: EQ 5 Dimensions Quality of Life, SS-QOL: Stroke Specific Quality Of Life
Scale; ARAT: Action Research Arm Test.

Author, Year Time Since Stroke Sample Size
(Active/Sham)

Neuromodulation
Intervention

Behavioral Intervention
and Frequency Outcome Metrics Main Efficacy Outcomes

Dawson,
2021 [7] 9 months–10 years 53/55 VNS

Standardized 7-tasks
arm in-clinic training

(18 sessions over
6 weeks) followed
by home exercise

UEFM, WMFT, MAL, SIS,
BDI, Euro-Qol-5D, SS-QOL

Clinically meaningful
response (UEFM > 6 points)
was seen in 47% in active

vs. 24% in sham group
(p < 0.01) at 90 days

Fridrikson,
2018 [8] >6 months 34/40 tDCS Computerized

speech therapy

Correct Naming on
Philadelphia Naming Test

and 80 Trained Items

Relative 70% increase in
correct naming for

A-tDCS relative to sham
and no futility.

Harvey,
2018 [9] 3 to 12 months 132/67 rTMS

Task-oriented upper
limb therapy (18 sessions

over 6 weeks)

UEFM, WMFT, ARAT, SIS
Euro-Qol-5D, PHQ-9

Both groups had clinically
meaningful response,
without significant
difference (p = 0.76)

Vink,
2023 [10] Within 3 weeks 29/31 cTBS Standard upper limb

therapy (10 sessions)
ARAT, UEFM,

SIS, Euro-Qol-5D

Significant improvement
in active cTBS (9.6 points

in ARAT, p = 0.0244)

Stockbridge
2023 [11] <3 months 30/28 tDCS Computer-delivered

naming treatment Philadelphia Naming Test No significant
difference (p = 0.54)

2.1. Vagus Nerve Stimulation

Vagus nerve stimulation (VNS) is a minimally invasive neuromodulation technique
provided concomitantly with behavioral therapies such as task-oriented arm therapy in
stroke to enhance motor recovery. Meyer and colleagues provided an initial proof of concept
that, compared to sham stimulation, coupling VNS with rehabilitative training resulted
in a twofold increase in long-term recovery for complex and basic motor tasks in rats
with stroke [12]. Overall, the proposed mechanism of VNS in post-stroke motor recovery
is the reorganization of the primary motor cortex through modulation of cholinergic
and noradrenergic retrograde projections of nucleus tractus solitarius (one of the main
vagus nuclei).

Initial clinical studies also showed that when combined with task-oriented upper limb
therapy, VNS was shown to increase motor recovery in patients with chronic stroke [13,14].
This led to a phase III pivotal trial in which Dawson and colleagues performed a random-
ized, sham-controlled, blinded, adequately powered study that showed that compared to
sham stimulation, patients in the active VNS groups had a significantly higher likelihood of
achieving clinically meaningful motor recovery (measured by at least six points increase in
the upper extremity Fugl-Meyer assessment) at 90 days [7]. After the positive results of the
pivotal phase III trial, the United States Food and Drug Administration (FDA) approved the
use of VNS in patients with chronic ischemic stroke and moderate to severe arm weakness.

The real-world implementation of VNS for post-stroke upper extremity recovery is
still underway. A multidisciplinary approach, including vascular neurology, neurosurgery,
and rehabilitation medicine, is crucial for success. Additionally, patient compliance and
the financial burden for long-term management are other critical factors for real-world
implementation. Finally, stroke patients generally have multiple comorbidities potentially
requiring antithrombotic use, which might make them ineligible for the procedure. Al-
though non-invasive VNS (nVNS) might be an alternative treatment for patients ineligible
for VNS therapy, previous studies failed to show consistent neuromodulatory effects of
nVNS in the motor cortex [15,16].

Additionally, further investigation should be pursued as to whether VNS will show
similar benefits for other post-stroke deficits such as aphasia, cognitive impairment, and
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dysphagia. The safety and efficacy of VNS in hemorrhagic or subacute stroke are other
frontiers in VNS research [17].

2.2. Transcranial Magnetic Stimulation

TMS modulates cortical excitability through the scalp via coil using the principle
of electromagnetic induction. This electromagnetic field induces a focal electric current
in the brain sufficient to depolarize neurons transiently. Single or paired-pulse TMS is
commonly used as an assessment tool to explore brain functioning, while when applied
repetitively—repetitive TMS (rTMS)—they can modulate cortical excitability in a sustained
manner. This modulation of excitability depends on the parameters of stimulation; high-
frequency (≥5 Hz) rTMS induces excitatory effects, while low-frequency (≤1 Hz) induces
inhibitory effects. rTMS is an FDA-approved treatment for multiple psychiatric disorders
such as major depression, obsessive compulsive disorders, and migraines. rTMS is con-
sidered safe (only non-serious adverse effects) when appropriate protocol and screening
are used [18].

The effects of both high- and low-frequency rTMS on motor recovery have been
studied in over 70 studies; most studies focus on upper extremity impairment, with limited
data available for the lower extremity [19,20]. The meta-analyses and evidence-based
guidelines suggest that using low-frequency over the contralesional hemisphere and high-
frequency rTMS over the ipsilesional hemisphere in the subacute phase is potentially
effective. At the same time, very limited evidence exists for the use of rTMS in the chronic
phase to enhance upper extremity rehabilitation [21]. However, current evidence from
randomized controlled trials is conflicting. An important phase III, multicenter, double-
blinded, randomized, sham-controlled trial assessed 18 sessions of low-frequency rTMS
over the motor cortex combined with intensive goal-oriented motor training in chronic
stroke patients with moderate upper extremity hemiparesis [9]. Although both groups
showed significant clinical improvement with intense therapy, additional rTMS did not
offer other benefits. These results were similar to their recent extension study (E-FIT:
Electric Field Navigated 1-Hz rTMS for Poststroke Motor Recovery) designed to address
concerns in sham TMS coil in the previous study [22]. Another group used a similar design
in patients within the first three months after stroke; similarly, there was no significant
difference between the active and sham rTMS groups [23].

On the other hand, a randomized sham-controlled clinical trial recently showed
that contralateral continuous theta burst stimulation (inhibitory) over the contralesional
hemisphere could improve upper limb recovery in stroke patients within 3 weeks of
symptom onset [10]. All these conflicting results from various studies suggest that the
theory of inhibitory stimulation over the contralateral motor cortex is considered sim-
plistic, given the heterogeneity of strokes involving motor deficits. Further evidence
suggests that the structural reserve after stroke contributes to recovery models (bimodal
balance–recovery model). Therefore, future studies need to consider lesion anatomy, the
extent of damage to transcallosal networks, and the integrity of the corticospinal tract for
better patient stratification [24].

Aphasia recovery is also studied using rTMS based on the same interhemispheric
inhibition hypothesis. The literature suggests beneficial perilesional activation in chronic
aphasia patients; however, the role of right hemisphere activation is unclear. Interestingly,
an fMRI study showed a robust right-sided contralesional activation selectively during
incorrect naming responses in post-stroke aphasia patients compared to healthy subjects,
which may reflect a dysfunctional reorganization rather than compensatory [25]. A dif-
fusion tensor imaging study further supported this [26]. Therefore, most rTMS studies
focused on delivering low-frequency inhibitory stimuli over the right hemisphere in com-
bination with traditional language therapies. While the initial studies on heterogenous
patient population/aphasia type with variable protocols had mixed results, recent studies
on non-fluent aphasia, especially Broca’s aphasia at the chronic stage, showed promising
effects of low-frequency rTMS over the right inferior frontal gyrus [27]. A phase II, random-
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ized, controlled, blinded trial, is in the recruitment phase to further test this in combination
with constraint-induced language therapy (NCT03651700).

Hemispatial neglect, a common and disabling condition, is described as pathologi-
cally asymmetric spatial performance, particularly in strokes involving the right posterior
parietal and superior temporal gyri. Based on initial evidence of rTMS effects on reducing
contralesional extinction by Oliveri and colleagues, studies focused on excitability-reducing
paradigms such as low-frequency rTMS and continuous theta burst stimulation (cTBS) over
the contralesional-hemisphere [28,29]. Despite studies suggesting improvement with rTMS
over the contralesional hemisphere, the evidence is limited given most of these studies
were not controlled. Also, another sham-controlled study compared low-frequency rTMS
of the contralesional hemisphere, high-frequency rTMS of the ipsilesional hemisphere, and
sham stimulation. It showed better improvement of visuospatial neglect in ipsilesional
high-frequency rTMS compared to other groups [30]. cTBS, another inhibitory TMS stimu-
lation protocol, has more promising evidence in visuospatial neglect. Five sham-controlled
studies with overall similar protocols showed significant clinical improvement in cTBS over
the left posterior parietal cortex, as well as improvement in global functioning [21,31–34].
A recent study showed the response to cTBS was associated with the integrity of interhemi-
spheric connections within the corpus callosum, indicating that responders had corpus
callosum intact but not in non-responders [33]. Currently, Level C evidence supports the
use of cTBS of the contralesional hemisphere for visuospatial neglect [21]. Further studies
are needed to test other visual-cognitive disorders with different pathophysiologies and
establish these neuroanatomical markers to identify responders.

2.3. Transcranial Direct Current Stimulation

tDCS consists of applying low-amplitude, steady, direct current via electrodes placed
over the skull. The current from the electrode sufficiently penetrates the underlying brain
tissue by flowing across the scalp. It provides a sub-threshold stimulus that modulates
neuronal transmembrane potentials and, therefore, influences the level of polarization and
likelihood of neuronal firing [35]. Two modes of tDCS have been most commonly used:
anodal stimulation increases excitability and cathodal stimulation decreases the excitability
of the cortex. The prolonged clinical effects are attributed to long-term potentiation and
depression if applied for a sufficient duration and intensity [36].

tDCS stimulates a wider area of the cortex in a less targeted fashion compared to
techniques like TMS, which can be advantageous by stimulating additional regions that
may play a role in recovery. Additionally, it has further advantages such as a better safety
profile and ease of use. Important parameters in tDCS studies include the location of
electrodes (montage/stimulation target), electrode sizes (current density), current intensity,
duration, and frequency. No irreversible severe side effects were seen with tDCS when
appropriately screened; common side effects include mild, temporary headache, skin
irritation/redness, and tingling/itching sensation during dose ramp up/down [37].

Motor recovery is the most studied in tDCS studies, modulating interhemispheric
inhibition by increasing excitability in the lesional hemisphere or decreasing excitability in
the non-lesional hemisphere. The proof-of-concept studies showed improvement in upper
extremity motor function, assessed mainly by the Fugl-Meyer scale, which could last for
several weeks and was associated with increased cortical excitability in the ipsilesional
hemisphere. Most clinical trials combined tDCS with various therapies, including occupa-
tional/physical therapy, constraint-induced movement therapy (CIMT), robotic-assisted
therapy, or virtual reality. Unfortunately, these trials showed mixed results and effect
sizes in post-stroke motor recovery, particularly given the significant variety in stimulation
parameters and study designs. A meta-analysis showed a dose–response relationship
in motor recovery; higher charge and current densities correlated with higher clinical
improvement [38]. Furthermore, the effect size was larger in chronic stroke patients and
with bihemispheric montage. Currently, TRANSPORT2, a multicentered, randomized,
triple-blinded, phase 2 clinical trial is investigating the effects of tDCS at different dosage



J. Clin. Med. 2023, 12, 6734 6 of 19

levels combined with an efficacy-proven rehabilitation therapy (CIMT) (NCT03826030).
The current literature suggests a possible role of tDCS as an adjuvant therapy for post-
stroke upper extremity motor recovery, particularly when applied in chronic stroke patients.
Further directions include developing biomarkers such as imaging biomarkers assessing
the structural and functional integrity of descending motor tracts [39].

Aphasia recovery is another potential use of tDCS as an adjunctive therapy to im-
prove the effects of aphasia treatments. Based on several promising pilot studies [40–43],
a double-blinded, randomized, controlled study assessed the effects of three weeks of
fMRI-guided anodal tDCS over the language cortex during outpatient speech therapy in
74 patients with post-stroke aphasia with varying types of aphasia (Broca’s aphasia being
the most common type) [8]. This study, with a futility design, showed the feasibility and
possible clinical improvement in speech production (naming). Most of these studies were
conducted on chronic stroke patients; therefore, another recent trial tested the effects of
MRI-guided anodal tDCS over the language cortex combined with computer-delivered lan-
guage therapy in subacute poststroke aphasia patients (varying types of aphasia included
in the study) [11]. This study showed no significant difference in naming performance one
week after therapy, likely due to a higher variability of improvement in this subacute stroke
population. Interestingly, in their secondary analysis, the discourse significantly improved
in the tDCS group five weeks after therapy, which is critical to life participation and quality
of life. All these studies showed favorable safety profiles, and there were no detrimental
effects of stimulating over longer periods, even up to 20 weeks. These two studies underline
the importance of using MRI guidance in individualizing the treatment targets across the
subjects. Also, since they determined the stimulation target based on fMRI or MRI, they
liberally included different types of aphasia rather than creating aphasia type-based enroll-
ment criteria and treatment protocols. However, non-fluent aphasia is typically the most
common type of aphasia included in the tDCS studies [8]. A recent meta-analysis showed
that anodal tDCS, particularly over the left inferior frontal gyrus (the typical location for
Broca’s aphasia), is most promising among multiple different tDCS stimulation types [44].
Further confirmatory trials are needed for clinical translation, given mixed results. Further
studies are currently underway with new stimulation techniques/montages to optimize
the stimulation of cortical networks involved in speech. Future studies with larger sample
sizes, longer and higher dose therapies, and more outcome measures are needed.

Besides tDCS, two newer electric stimulation techniques, transcranial alternating
current stimulation (tACS) and transcranial random noise stimulation (tRNS), use weak
alternating currents to stimulate the cortex. tACS delivers sinusoidal currents (0.1–80 Hz)
between electrodes, while tRNS delivers a wider range frequency (0.1–640 Hz) in a ran-
dom order, and they modulate neuronal activity by influencing brain oscillations. These
techniques are more commonly tested in behavioral and movement disorders, but few
proof-of-concept studies suggested feasibility and possible effects in stroke recovery, es-
pecially in the chronic phase [45–47]. Current evidence is limited for clinical translation;
more studies are ongoing to assess the efficacy and mechanism of these alternating current
stimulations in different modalities, including motor, sensory, speech, cognitive, and visual
recovery (NCT04043689, NCT05576129, NCT06029062, NCT06048159, NCT05466487).

Finally, neuromodulation techniques have been used to treat disorders of conscious-
ness, defined as an alteration in arousal and awareness. This disorder is commonly caused
by cardiac arrest, traumatic brain injury (TBI), and stroke, especially intracerebral hem-
orrhage. Unfortunately, currently, amantadine is the only beneficial treatment shown by
a randomized trial on TBI patients, despite the significant burden to patients, caregivers,
and healthcare. Besides many pharmacological treatments, TMS [48–57], tDCS [58–68],
tACS [69], tRNS [70], and VNS [71,72] are considered possible treatment approaches to
restore consciousness by neural restoration across large cortical-thalamo-cortical networks.
TMS and tDCS were more commonly studied, targeting either the dorsolateral prefrontal
cortex or the motor cortex (M1). Despite positive results on consciousness, these studies
are limited to drawing a conclusion, given most of them were case reports/case series or
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small sample-sized randomized studies with mixed patient populations. Neuromodulation
can be a promising tool for prognostication and recovery in stroke patients with disorders
of consciousness; current pilot/small studies are encouraging, and further robust large
sample-sized clinical trials are needed.

3. Activity-Based Therapies

Activity-based therapies are the key component of stroke neurorehabilitation. The
principle of these therapies is to provide structuralized activities with adequate quantity
and quality to induce plasticity for recovery. However, there are many challenges in clinical
and research settings, including a lack of standardization, limited dose and intensity, and
variability of responders. While the therapies with favorable plasticity use high intensity in
animal studies with a range of 300–800 repetitions, achieving similar intensity in clinical
settings has been challenging [73,74]. A study observed in in-clinic therapies showed a
mean of 32 repetitions per session, which was a substantially smaller dose compared to
animal studies [75]. We will highlight current advances in promising therapies aiming to
provide higher quality and quantity of rehabilitation. Table 2 summarizes prominent recent
clinical trials in activity-based therapies.

Table 2. Prominent clinical trials in activity-based interventions. WMFT: Wolf Motor Function Test;
MAL: Motor Activity Log; ARAT: Action Research Arm Test; UEFM: Upper Extremity Fugl-Meyer.

Author, Year Time Since Stroke Sample Size
(Active/Control) Study Intervention Control Group Outcome Metrics Main Safety and

Efficacy Outcomes

Wolf, 2006 [76] 3 to 9 months 106/116 Constraint-induced
movement therapy Usual care WMFT, MAL

Significant reduction
in WMFT

performance time
(p < 0.001)

Rodgers, 2019 [77] 1 week to 5 years 257/259/254

Robot-assisted
training or

enhanced upper
limb therapy

Usual care ARAT No significant
difference

Cramer, 2019 [78] 4 to 36 weeks 62/62 Telerehabilitation In-clinic therapy UEFM Non-inferiority of
telerehabilitation

3.1. Constraint Induced Movement Therapy

Constraint-Induced Movement Therapy (CIMT) is an effective and popular rehabilita-
tion approach primarily designed to improve the functional use of an affected limb in stroke
patients. This therapy involves an intense functionally oriented task practice of the paretic
extremity along with restraint of the less-impaired extremity for most waking hours [79].
The main two principles of CIMT are (i) constraint of forced use of the less-affected limb
with a splint or mitt, preventing its use during 90% of the day and therefore promoting
more frequent and intensive use of the more impaired limb; (ii) intensive training of more
affected limb with task-oriented, structured, and repetitive activities for up to 6 h a day for
two weeks.

The history of constraint-induced therapy theory dates back to the early 1900s when
the phenomena of motor disability due to disuse was described in monkeys with pyramidal
tract lesions by Franz and colleagues [80]. Subsequently, they provided the first documented
evidence that these monkeys, forced to use their hemiparetic extremity by immobilizing the
better limb, had increased and faster recovery. It was hypothesized that the deafferentation
leads to inactivity and behavioral changes of not using the affected limb; “learned nonuse”
could be overcome by behavioral strategies such as CIMT [81]. The current evidence
is from the multicentered, randomized, single-blinded EXCITE trial, the first National
Institute of Health (NIH)-funded stroke neurorehabilitation trial, and the only randomized-
controlled Phase III trial that has shown efficacy in stroke recovery [76]. EXCITE trial
showed significant and clinically relevant improvement in upper extremity motor function
in patients with first stroke within the previous 3–9 months as a result of 10 days of CIMT



J. Clin. Med. 2023, 12, 6734 8 of 19

therapy. These clinical improvements persisted for at least one year after the intervention.
Although this therapy was designed to improve upper extremity weakness, further studies
in the lower extremity suggested improvement in motor functions and balance-related
motor function [82]. The current evidence supports the use of CIMT in stroke patients,
particularly in upper extremity motor recovery.

Besides the theory of overcoming “learned nonuse”, plasticity plays an important
role in CIMT outcomes. Several studies showed cortical reorganization after CIMT-based
interventions by changes in the size and excitability of regions representing the affected
limb [83,84]. Researchers evaluated the motor cortex changes with TMS motor mapping
and showed an increase in the size of hand muscles only in the ipsilesional hemisphere
after CIMT treatment, as well as changes in excitability corresponding to recovery [85].
Given these changes in inter and intra-cortical excitability, further investigations of CIMT in
combination with non-invasive brain stimulation techniques are underway (NCT03826030).
Further studies are needed to develop biomarkers to identify the best responders and to
guide concomitant interventions to optimize the rehabilitation of stroke patients.

3.2. Robot-Assisted Therapies

Robot-assisted therapies (RAT) are another novel modality in which patients are
provided upper or lower limb therapy by robotic devices rather than conventional hands-
on therapy. RAT can provide a high-intensity standardized therapy, which is thought to be
important in motor cortex reorganization and promoting recovery. RAT aims to increase
the capacity of motor control of the paretic arm or leg, muscle strength, and upper limb
capacity, and thus promote basic activities of daily living.

As a proof-of-concept study, Takahashi and colleagues conducted a 3 week-long upper
limb RAT in 13 patients with stroke. They showed that RAT produced a significant motor
gain in patients with moderate post-stroke motor deficits [86]. In a larger-scale, multicenter,
randomized, and controlled trial, Lo and colleagues compared RAT, intensive comparison
therapy, and usual care in chronic stroke patients with moderate-to-severe upper-limb
impairments [87]. They showed that RAT increased motor function in 36 weeks compared
to standard therapy. However, RAT was not superior to intensive therapy, which suggested
that RAT was as good as intensive behavioral therapy. Similarly, Rodgers and colleagues
showed that compared with usual care, RAT did not lead to better motor recovery in
patients with stroke-related moderate to severe upper limb dysfunction [77]. At this point,
RAT is safe and induces positive effects in motor recovery after stroke, but its superiority to
usual intense therapy is yet to be proven [88]. Overall, repetition and intensity are the key
factors for favorable motor recovery, and RAT is a promising alternative to conventional
therapies to achieve these goals.

3.3. Telerehabilitation

Telerehabilitation is a method of delivering rehabilitation services remotely using
communication methods. This therapy aims to address the main challenges of providing
higher doses of rehabilitation therapies, such as cost-related issues, traveling difficulties,
limited access to high-quality rehabilitation centers/providers, poor compliance, and dose
limitations of in-clinic therapy sessions. Furthermore, telerehabilitation’s principles of high
intensity, easy access, and gamification of tasks help to promote a higher quality of therapy
by creating more challenging, motivating, and variable goal-oriented tasks in more relevant
environments with the supervision and feedback of therapists. A randomized, multicen-
tered, non-inferiority trial showed comparable efficacy of home-based telerehabilitation
to traditional in-clinic rehabilitation, with excellent adherence and higher arm movement
repetition (average 1031 repetitions per day) [78].

Most studies enrolled patients with chronic stroke patients, but a recent study assessing
the optimal time for motor recovery showed that the task-specific motor therapies were
most effective within the first 2–3 months, suggesting enhanced neural plasticity in earlier
stages after stroke [89]. In clinical practice, the early initiation of rehabilitation is challenging
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due to limited, fragmented, and often delayed transition care from initial hospitalization
to in-facility rehabilitation and/or to home settings. Telerehabilitation may address these
challenges of transition and improve earlier access to rehabilitation with better continuity of
care. A recent feasibility study supports that telerehabilitation is feasible, safe, and possibly
efficacious in providing therapy to early stroke patients [90]. Further controlled studies are
needed to expand the use of telerehabilitation.

4. Brain–Computer Interfaces

The activity-based therapies described above require some residual movement of
the affected limb; however, not all stroke survivors qualify for these treatments. The
brain–computer interface (BCI) is an emerging field, especially in settings of technological
advances such as virtual reality, robotics, and sensors. BCIs allow control of robotics devices
by translating the brain’s neural and/or physiological activity into a signal, completely
bypassing the lesion [91]. While BCIs can be used as assistive technology to help with
patients’ functions and daily living activities [92], here we focus on their use as rehabilitation
technologies. The rehabilitative (also referred to as neurofeedback) BCIs aim to recognize
patients’ intention of movement/task with brain signals captured with scalp-recorded
electroencephalogram (EEG), then provide a user perceivable feedback using a feedback
mechanism (combination of visual displays, robotic devices, exoskeletons, etc.) [93,94]. The
aim of BCIs is to enhance neuroplasticity with motor imagery and sensory feedback by
closing the gap in the motor intention, execution, and feedback loop.

Most studies assessed rehabilitative BCIs for upper extremity motor recovery. Two
metanalyses showed statistically and clinically significant improvement in upper extremity
motor functions, measured mainly by the Fugl-Meyer assessment, with effect sizes compa-
rable to other treatment modalities used in stroke rehabilitation [95,96]. There is limited
evidence for the use of rehabilitative BCIs for lower extremity recovery; however, it is
far less studied due to difficulties in decoding algorithms of lower extremity movement
kinematics using non-invasive recordings [97]. The literature is promising for BCIs’ use
for cognitive and speech rehabilitation in other brain disorders like cognitive impairments,
attention deficit disorders, and traumatic brain injury [98–100]. However, currently the
data are very limited for post-stroke rehabilitation. Lesion bypass mechanisms with neuro-
feedback are promising for stroke recovery, particularly with severe post-stroke deficits;
further large controlled clinical trials are needed to validate its use in motor recovery and
explore its effects in cognitive and speech recovery.

5. Pharmacological and Cellular Therapies

Over the past decades, the research on pharmacological therapies primarily focused
on neuroprotection in the acute stroke phase; however, many drugs have been studied to
possibly enhance stroke recovery through neuroplasticity and neuronal regrowth. Several
therapies include anti-depressants, stimulants, dopamine agonists, niacin, memantine,
growth factors, monoclonal antibodies, and stem cells. In this review, we focused on
promising therapies with translational potentials: selective serotonin reuptake inhibitors,
maraviroc, and stem cell therapies.

5.1. Selective Serotonin Reuptake Inhibitors (SSRIs)

SSRIs are the most extensively studied pharmacological agent in stroke recovery.
Post-stroke depression is common, with higher vulnerability in the early chronic period.
Post-stroke depression may directly affect motivation and adherence to participate in
rehabilitation. Therefore, identifying and treating depression was of interest to support
recovery. However, SSRIs may also enhance synaptic plasticity after an ischemic brain injury
besides the anti-depressant effects. This was initially tested with the FLAME (Fluoxetine for
Motor Recovery After Acute Ischemic Stroke) trial, which showed a statistically significant
improvement in motor recovery, measured by a Fugl-Meyer motor score, in stroke patients
treated with fluoxetine [101]. However, a subsequent Cochrane systematic review, including
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52 randomized trials, challenged these results, given the methodological limitations and
heterogeneity of studies [102]. Therefore, three additional large randomized controlled
clinical trials (AFFINITY: Assessment of Fluoxetine in Stroke Recovery, FOCUS: Fluoxetine
or Control Under Supervision trials, and EFFECTS: Efficacy of Fluoxetine—a Randomised
Controlled Trial in Stroke) were conducted and they did not show functional improvement
at 6 months, measured by a modified Rankin Scale (mRS) [103–105]. The main issues with
these trials include the heterogeneous study population with mainly mild stroke patients,
which might decrease the sensitivity to detect group differences. Another limitation was
the use of mRS, which may limit the interpretation of these trials. Despite the fact that
mRS is commonly used in studies for stroke outcomes to assess functional independence,
this measure is potentially insensitive in capturing various improvements in different
systems such as motor, language, cognition, etc. SSRIs may still play an important role in
treating post-stroke depression and possibly improve recovery, especially if paired with
other therapies. Finally, given language recovery was limitedly assessed in these trials,
another multicentered, randomized, placebo-controlled phase II trial (ELISA: Escitalopram
and Language Intervention for Subacute Aphasia trial) is currently in the recruitment
phase, assessing the effect of escitalopram as an adjunct to traditional speech and language
treatment [106].

5.2. Maraviroc

C-C chemokine receptor 5 (CCR5), which plays a role in learning, memory, and plastic-
ity [107], was recently shown to be differentially upregulated in neurons post-stroke [108].
This study showed that the knockdown of CCR5 in the premotor cortex induces motor
recovery after stroke. An FDA-approved drug for the treatment of HIV, maraviroc, has
known effects on selectively antagonizing CCR5 function, and this treatment also showed
similar effects in recovery in this animal study. Interestingly, they performed an obser-
vational study in a large cohort of stroke patients and showed that patients with CCR5
loss-of-function mutation had better recovery after stroke [108,109]. Given these promising
results, two randomized controlled phase II trials for human stroke recovery are currently
ongoing (NCT03172026, NCT04789616).

5.3. Stem Cell Therapies

Current stroke recovery treatments focus on enhancing neuroplasticity but are still
limited in terms of their regenerative benefits. Stem cell therapies have been a promising
treatment approach for potential neuroprotection and neuroregeneration [110]. Neuro-
protective use of stem cells aims to limit the extent of initial damage during the acute
stroke phase and expand the window of available treatments. Neuroregenerative stem
cell therapies aim to reduce the neuronal loss and to replace injured neurons. Here, we
highlight the evidence for the neuroregenerative use of stem cells to enhance post-stroke
recovery. The initial evidence is from animal stroke models: one meta-analysis including
141 pre-clinical studies showed improvement in functional outcomes including motor,
sensorimotor and cognitive function, without any differences based on delivery route
or dose [111]. A phase I/II non-controlled study showed that single-dose intravenous
allogeneic mesenchymal stem cells were safe in patients with chronic stroke and substantial
functional, and furthermore suggested behavioral gains [112]. A single-center, open-label
randomized clinical trial (ISIS-HERMES trial) showed improved motor outcomes after
intravenous autologous mesenchymal stem cell combined with rehabilitation [113]. The
treatment group had greater motor cortex activation suggesting that this effect was through
sensorimotor neuroplasticity. On the other hand, the RECOVERY trial, a phase 2, ran-
domized, sham-controlled study, assessed the safety and efficacy of intracarotid infusion
of autologous bone marrow-derived ALD-401 and showed no significant difference in
mRS at 90 days [114]. However, there was an increased incidence of smaller lesions in
the treatment group. Finally, the PISCES-II trial, an industry-funded, single-arm study,
assessed intracerebral CTX0E03 human neural stem cell injection in stroke patients with
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severe arm motor deficits [115]. Only 1/23 patients met prespecified criteria for respon-
ders, 3/23 at 6 and 12 months, and responders were only the ones with residual upper
limb movement at baseline. All these studies found that these interventions were safe
and feasible. Current studies vary in their protocols with different cell types, delivery
methods, and doses; further studies with larger sample sizes and robust methodologies
are needed.

6. Cognitive-Based Therapies
6.1. Prism Adaptation Therapy

Spatial neglect is described as failure to orient, perceive, and/or respond to left space
after a right brain stroke, which is accompanied by functional disability and is usually
under-recognized [116]. This condition is particularly important for stroke recovery given
the challenges such as prolonged hospitalization, requiring more caregiver/supervision,
poor motor recovery, and increased fall risk. Despite several therapeutic approaches
available for visual perception deficits, such as visual scanning training [117,118], these
approaches focus on abnormal visuospatial perception, also defined as “where” spatial
neglect [119]. While neglect can present as the classic visual perceptual phenomenon
(“where” spatial neglect), it can be in the form of spatial motor-intentional deficits (“aiming”
spatial neglect). Aiming spatial neglect can present as postural imbalance, veering while
ambulating or in a wheelchair, and out of proportion weakness to motor dysfunction [120].
These deficits are often undetected and may not respond to visual perceptual therapies,
limiting their recovery after stroke. Prism adaptation therapy is a novel approach, targeting
impairments in spatial motor aiming spatial neglect.

PAT is a simple and inexpensive therapy that requires stroke patients to wear wedge
prism lenses, shifting the visual field approximately 12 degrees rightwards during intensive
motor training. This therapy is brief (20 min), easy to perform, and has advantages for
in-hospital/clinic use standardization. PAT is well tolerated; adverse effects include mild
and transient discomfort or dizziness [121]. Level A evidence supports using cognitive
rehabilitation for spatial neglect, including PAT [122]. A systematic review including
26 controlled studies suggests improvement in functional disability during daily living
activities with PAT [123]. However, the results from controlled studies are inconsistent
and present variability in patient responses to PAT. One of the issues with the current
literature is the failure to stratify spatial neglect patients; as discussed above, PAT may be
more effective in “aiming” spatial neglect rather than early perceptual deficits. Studies
demonstrated specific alterations in spatial motor aiming bias in healthy and stroke patients
with PAT [124]. Furthermore, the outcome measure choices in the literature are more
oriented to spatial attention or awareness, therefore failing to capture the improvements
with PAT [121]. The dosage of PAT is also variable in studies, and a recent study predicted
greater improvement with a higher dose of PAT [125]. Finally, the neuroanatomy of stroke
lesions may affect the response to PAT. A recent randomized controlled study showed that
only patients with frontal lesions improved their neglect symptoms, while the presence of
frontal lesions did not affect the response in the standard-care group [126].

Further studies are needed with better classification and stratification of spatial neglect
patients, possibly screening for spatial “aiming” deficits to optimize patient selection, better
outcome measures including both mechanistic and functional outcomes, and identifying
neuroimaging biomarkers for PAT response. Currently, two studies are ongoing to address
these questions (NCT05983185, NCT00989430).

6.2. Virtual Reality

Virtual reality (VR) and interactive video gaming are other developing treatment
approaches in stroke rehabilitation. VR therapies use an interactive simulation where
patients/users have the opportunity to engage in an environment similar to the real-world
using controllers [127]. Currently, there are three main virtual reality systems; (i) non-
immersive, (ii) semi-immersive, and (iii) fully immersive simulations. The non-immersive
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systems allow a two-dimensional computer-generated environment through consoles and
computer displays, where patients can control an avatar using a control tool, similar
to common video games. While semi-immersive systems provide a three-dimensional
environment with a fixed visual perspective, the fully immersive systems allow patients to
experience the most realistic simulation environment where they can immerse themselves
using a head-mounted display and extensive motion sensors.

VR offers many advantages in stroke rehabilitation. The duration and repetition
(dose) of training are important for recovery; VR can increase the rehabilitation dosage by
enabling patients to practice functional tasks in simulated environments. Several studies
suggested the feasibility of high-dose rehabilitation using VR [128,129]. The simulated
environments also help the effectiveness of sessions by increasing the active training time
and, furthermore, can decrease the travel and accessibility-related difficulties. Given the
significant variability in study protocols, it is hard to draw definitive conclusions from
the existing literature. A meta-analysis in 2017 with 72 studies failed to show significant
improvement in upper extremity function of VR compared to conventional therapy, but it
was significant when combined with usual care [130,131]. More recent studies since this
meta-analysis had positive results, which were particularly attributed to higher doses of
therapy [130,131]. The studies with significant improvement had more intensive therapies,
suggesting a dose–effect relationship [132]. Besides the dose differences, multiple different
VR systems and controllers, as well as newer features including hand movement trackers,
enhanced feedback systems, and sensorized hand-held objects, varied widely in the studies.
Finally, a recent meta-analysis comparing immersive and non-immersive virtual reality for
upper extremity motor recovery suggested superior effects with immersive virtual reality
systems [133]. The superior effects of immersive systems could be attributed to higher user
perception and sensory feedback, and facilitation of patients to engage in task-oriented
activities [134]. Current evidence suggests the beneficial effects of virtual reality, especially
with immersive systems, in upper extremity motor recovery. Further studies should focus
on providing high-intensity VR therapy and test if using these physical objects or enhanced
feedback systems may improve recovery.

6.3. Motor Imagery and Action Observation Therapies

Motor imagery and action observation therapies are forms of cognitive treatment
that aim to activate motor cortex plasticity without an actual motor execution. While
action observation therapy is defined as the perception of other individuals performing
a motor task, motor imagery is a mental practice to simulate a movement without motor
input [135]. This mental practice theory for neurorehabilitation is based on multiple forms
of evidence which indicate that imagery of a motor task induces a similar pattern of brain
activity compared to actual motor execution [136]. More recently, the focus of research
has been combining motor imagery and action observation, and this combination was
found to involve a greater neuronal activity including other supplemental cortical and
subcortical motor areas [137]. Therefore, the possible benefits of these treatments have
been tested for motor recovery after stroke. Despite motor imagery having promising early
studies [138,139], the overall literature is conflicting [140,141]. A meta-analysis showed
significant heterogeneity in methodological quality in these trials, and despite detecting
a signal for the efficacy of motor imagery for upper and lower extremity motor function
and balance, there was no significant difference when only high-quality studies were
included [142]. The action observation had more consistent positive effects, especially
if combined with concomitant physical therapy of observed action [143,144]. Finally,
combining observation and motor imagery had better functional outcomes [145]; however,
this needs to be tested further with a larger sample size [146]. Currently, the evidence of
these mental practices is limited to drawing a final conclusion; the most promising effect
is likely when action observation and motor imagery are combined and when introduced
concomitantly with actual physical training.
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7. Conclusions

Various new approaches and technological advances had promising results in pro-
moting recovery after stroke. These therapies target to enhance neural plasticity and
help overcome challenges of rehabilitation access in order to provide an adequate dose
of rehabilitation and improve adherence and participation. CIMT and telerehabilitation
are promising to overcome these challenges of accessibility and dosing, and the future
of recovery is focused on involving virtual reality in activity-based treatments. The mul-
tidisciplinary treatment models are crucial for post-stroke neurorehabilitation; further
adjuvant treatments with brain stimulation techniques and pharmacological agents should
be considered to maximize the recovery. Finally, there is a significant gap in identifying and
treating cognitive disorders after stroke, further diagnostic/screening tools and treatment
options are needed. One of the main challenges in the field is the methodological variations
and heterogeneous patient populations that limit providing an overarching conclusion.
The studies and their mixed results point out the importance of matching the appropriate
patient population; therefore, developing biomarkers is crucial to guide future research
designs and clinical practices.
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